CONTACT LOCI AND VALUATIONS

LAWRENCE EIN

This is joint work with R. Lazarsfeld and M. Mustaţă. Let X be a smooth complex variety. Given $m \geq 0$, we denote by

$$
X_{m}=\operatorname{Hom}\left(\operatorname{Spec} \mathbb{C}[t] /\left(t^{m+1}\right), X\right)
$$

the space of $m^{\text {th }}$ order arcs on X. Similarly we define the space of formal arcs on X as

$$
X_{\infty}=\operatorname{Hom}(\operatorname{Spec} \mathbb{C}[[t]], X)
$$

Consider now a non-zero ideal sheaf $\mathfrak{a} \subseteq \mathcal{O}_{X}$ defining a subscheme $Y \subseteq X$. Given a finite or infinite arc γ on X, the order of vanishing of \mathfrak{a} - or the order of contact of the corresponding scheme Y - along γ is defined in the natural way. ${ }^{1}$ For a fixed integer $p \geq 0$, we define the contact loci

$$
\operatorname{Cont}^{p}(Y)=\operatorname{Cont}^{p}(\mathfrak{a})=\left\{\gamma \in X_{\infty} \mid \operatorname{ord}_{\gamma}(\mathfrak{a})=p\right\} .
$$

These are locally closed cylinders, i.e. they arise as the common pull-back of the locally closed sets

$$
\begin{equation*}
\operatorname{Cont}^{p}(Y)_{m}=\operatorname{Cont}^{p}(\mathfrak{a})_{m}=_{\text {def }}\left\{\gamma \in X_{m} \mid \operatorname{ord}_{\gamma}(\mathfrak{a})=p\right\} \tag{1}
\end{equation*}
$$

defined for any $m \geq p$. Let W be the closure of an irreducible component of $\operatorname{Cont}^{p}(\mathfrak{a})$. We can naturally associate a valuation of the function field of X to W in the following manner. Let f be a nonzero rational function of X. We define

$$
\operatorname{val}_{W}(f)=\operatorname{ord}_{\gamma}(f) \text { for a general } \gamma \in W .
$$

Such a valuation is called a contact valuation. Suppose $\mu: X^{\prime} \longrightarrow X$ be a proper birational morphism. Assume that E is an irreducible divisor in X^{\prime}. We can define the valuation associated to E by $\operatorname{val}_{E}(f)=$ the vanishing order of f along E. A valuation on the function field of X is called a divisoriral valuation if it is of the form $m \cdot \operatorname{val}_{E}$ for some positive integer m. A basic invariant of val_{E} from higher dimensional birational geometry is the discrepancy along E which is defined as

$$
k_{E}=\operatorname{val}_{E}(\operatorname{det}(J(\mu)) \text { where } J(\mu) \text { is the Jacobian matrix of } \mu \text {. }
$$

k_{E} is just the coefficient of the relative canonical divisor $K_{X^{\prime} / X}$ along E.
Theorem A. Every contact valuation is a divisorial valuation. Conversely, every divisorial valuation can be realized uniquely as a contact valuation.

[^0]In the above correspondence, suppose that a contact valuation val_{W} is equal to a divisorial valuation $m \cdot V a l_{E}$. The following theorem relates the geometry between the two valuations.

Theorem B. $\operatorname{codim}\left(W, X_{\infty}\right)=m \cdot\left(k_{E}+1\right)$.
The above two theorems also hold for singular varieties after some minor modifications using Nash's blow-up and Mather's canonical class.

These results can be used to study singularities of pairs. Let X be a normal \mathbb{Q} Gorenstein complex variety and Y be closed subscheme of X. We also fix a positive number λ. One can study the singularities of the pair $(X, \lambda \cdot Y)$ using log-resolution. Consider a divisorial valuation of the form val_{E} with center $c_{X}(E)$ in X. We consider the \log discrepancy of $(X, \lambda \cdot Y)$ along E,

$$
a(E, X, \lambda \cdot Y)=k_{E}+1-\lambda \cdot \operatorname{val}_{E}\left(I_{Y}\right),
$$

where I_{Y} is the ideal of Y in X. Suppose that B is a closed subset of X. We can measure the singularities of the pair $(X, \lambda \cdot Y)$ along B using the invariant minimal log-discrepancy.

Definition 0.1. Let $B \subseteq X$ be a nonempty closed subset. The minimal log discrepancy of $(X, \lambda \cdot Y)$ on W is defined by

$$
\begin{equation*}
m l d(B ; X, \lambda \cdot Y):=\inf _{c_{X}(E) \subseteq W}\{a(E ; X, \lambda \cdot Y)\} \tag{2}
\end{equation*}
$$

Suppose D is a normal effective Cartier divisor in X and B be a closed subset of D. The following theorem is a joint result with Mustaţă. It allows us to compute the minimal log-discrepancy $m l d(B ; X, D+\lambda \cdot Y)$ using $\operatorname{mld}\left(B ; D,\left.\lambda \cdot Y\right|_{D}\right)$.

Theorem C. Let X be a normal, local complete intersection variety, and Y be a proper closed subscheme of X. Let λ is a positive number. Assume $D \subset X$ is a normal effective Cartier divisor such that $D \nsubseteq Y$, then for every proper closed subset $B \subset D$, we have

$$
m l d(B ; X, D+\lambda \cdot Y)=\operatorname{mld}\left(B ; D,\left.\lambda \cdot Y\right|_{D}\right) .
$$

The theorem is first proved in the case that X is smooth in a joint paper of Ein, Mustaţǎ and Yasuda. In general, Kollár, and Shokurov have conjectured that the result is true when X is just normal and \mathbb{Q}-Gorenstein (Inversion of Adjunction). See Kollár's article for a discussion of this conjecture and related topics. The following are some geometric applications of the Theorem.

Theorem D. If X is a normal, local complete intersection variety, and Y is a closed subscheme. Suppose that λ is a positive number then the function $x \longrightarrow \operatorname{mld}(x ; X, \lambda \cdot Y)$, $x \in X$, is lower semicontinuous.

Theorem E. Let X be a normal, local complete intersection variety. X has log canonical (canonical, terminal) singularities if and only if X_{m} is equidimensional (respectively irreducible, normal) for every m.

References

[1] F. Ambro, Inversion of Adjunction for non-degenerate hypersurfaces, arXiv: math.AG/0108168.
[2] L. Ein, R. Lazarsfeld, M. Mustaţă, Contact loci in arc spaces, Compositio Math. 140 (2004) 1229-1244 math.AG/0303002.
[3] L. Ein, M. Mustaţǎ, and T. Yasuda Jet schemes, log discrepancies and inversion of adjunction Invent. Math. 153 (2003) 519-535.
[4] L. Ein, M. Mustaţă, Inversion of adjunction for local complete intersection variety, Am. J. Math. 126 (2004)1355-1365.
[5] J. Kollár, Singularities of pairs, in Algebraic Geometry, Santa Cruz 1995, volume 62 of Proc. Symp. Pure Math Amer. Math. Soc. 1997, 221-286.
[6] M. Mustaţǎ, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), 599-615.
[7] M. Mustaţǎ, Jet schemes of locally complete intersection canonical singularities, with an appendix by D. Eisenbud and E. Frenkel, Invent. Math. 145 (2001), 397-424.

[^0]: ${ }^{1}$ Specifically, pulling \mathfrak{a} back via γ yields an ideal $\left(t^{e}\right)$ in $\mathbb{C}[t] /\left(t^{m+1}\right)$ or $\mathbb{C}[[t]]$, and one sets

 $$
 \operatorname{ord}_{\gamma}(\mathfrak{a})=\operatorname{ord}_{\gamma}(Y)=e
 $$

 $\left(\right.$ Take $\operatorname{ord}_{\gamma}(\mathfrak{a})=m+1$ when \mathfrak{a} pulls back to the zero ideal in $\mathbb{C}[t] /\left(t^{m+1}\right)$ and $\operatorname{ord}_{\gamma}(\mathfrak{a})=\infty$ when it pulls back to the zero ideal in $\mathbb{C}[[t]]$.)

