CONTACT LOCI AND VALUATIONS

LAWRENCE EIN

This is joint work with R. Lazarsfeld and M. Mustață. Let X be a smooth complex variety. Given $m \ge 0$, we denote by

$$X_m = \operatorname{Hom}(\operatorname{Spec} \mathbb{C}[t]/(t^{m+1}), X)$$

the space of m^{th} order arcs on X. Similarly we define the space of formal arcs on X as

$$X_{\infty} = \operatorname{Hom}(\operatorname{Spec}\mathbb{C}[[t]], X)$$

Consider now a non-zero ideal sheaf $\mathfrak{a} \subseteq \mathcal{O}_X$ defining a subscheme $Y \subseteq X$. Given a finite or infinite arc γ on X, the order of vanishing of \mathfrak{a} — or the order of contact of the corresponding scheme Y — along γ is defined in the natural way.¹ For a fixed integer $p \geq 0$, we define the *contact loci*

$$\operatorname{Cont}^{p}(Y) = \operatorname{Cont}^{p}(\mathfrak{a}) = \left\{ \gamma \in X_{\infty} \, | \, \operatorname{ord}_{\gamma}(\mathfrak{a}) = p \right\}.$$

These are locally closed cylinders, i.e. they arise as the common pull-back of the locally closed sets

(1)
$$\operatorname{Cont}^{p}(Y)_{m} = \operatorname{Cont}^{p}(\mathfrak{a})_{m} =_{\operatorname{def}} \left\{ \gamma \in X_{m} \mid \operatorname{ord}_{\gamma}(\mathfrak{a}) = p \right\}$$

defined for any $m \ge p$. Let W be the closure of an irreducible component of $\operatorname{Cont}^p(\mathfrak{a})$. We can naturally associate a valuation of the function field of X to W in the following manner. Let f be a nonzero rational function of X. We define

$$\operatorname{val}_W(f) = \operatorname{ord}_{\gamma}(f)$$
 for a general $\gamma \in W$.

Such a valuation is called a contact valuation. Suppose $\mu : X' \longrightarrow X$ be a proper birational morphism. Assume that E is an irreducible divisor in X'. We can define the valuation associated to E by $\operatorname{val}_E(f) =$ the vanishing order of f along E. A valuation on the function field of X is called a divisorial valuation if it is of the form $m \cdot \operatorname{val}_E$ for some positive integer m. A basic invariant of val_E from higher dimensional birational geometry is the discrepancy along E which is defined as

$$k_E = \operatorname{val}_E(\det(J(\mu)))$$
 where $J(\mu)$ is the Jacobian matrix of μ .

 k_E is just the coefficient of the relative canonical divisor $K_{X'/X}$ along E.

Theorem A. Every contact valuation is a divisorial valuation. Conversely, every divisorial valuation can be realized uniquely as a contact valuation.

¹Specifically, pulling \mathfrak{a} back via γ yields an ideal (t^e) in $\mathbb{C}[t]/(t^{m+1})$ or $\mathbb{C}[[t]]$, and one sets

$$\operatorname{ord}_{\gamma}(\mathfrak{a}) = \operatorname{ord}_{\gamma}(Y) = e.$$

⁽Take $\operatorname{ord}_{\gamma}(\mathfrak{a}) = m+1$ when \mathfrak{a} pulls back to the zero ideal in $\mathbb{C}[t]/(t^{m+1})$ and $\operatorname{ord}_{\gamma}(\mathfrak{a}) = \infty$ when it pulls back to the zero ideal in $\mathbb{C}[[t]]$.)

L.EIN

In the above correspondence, suppose that a contact valuation val_W is equal to a divisorial valuation $m \cdot Val_E$. The following theorem relates the geometry between the two valuations.

Theorem B. $\operatorname{codim}(W, X_{\infty}) = m \cdot (k_E + 1).$

The above two theorems also hold for singular varieties after some minor modifications using Nash's blow-up and Mather's canonical class.

These results can be used to study singularities of pairs. Let X be a normal \mathbb{Q} -Gorenstein complex variety and Y be closed subscheme of X. We also fix a positive number λ . One can study the singularities of the pair $(X, \lambda \cdot Y)$ using log-resolution. Consider a divisorial valuation of the form val_E with center $c_X(E)$ in X. We consider the log discrepancy of $(X, \lambda \cdot Y)$ along E,

$$a(E, X, \lambda \cdot Y) = k_E + 1 - \lambda \cdot \operatorname{val}_E(I_Y),$$

where I_Y is the ideal of Y in X. Suppose that B is a closed subset of X. We can measure the singularities of the pair $(X, \lambda \cdot Y)$ along B using the invariant minimal log-discrepancy.

Definition 0.1. Let $B \subseteq X$ be a nonempty closed subset. The minimal log discrepancy of $(X, \lambda \cdot Y)$ on W is defined by

(2)
$$mld(B; X, \lambda \cdot Y) := \inf_{c_X(E) \subseteq W} \{a(E; X, \lambda \cdot Y)\}.$$

Suppose D is a normal effective Cartier divisor in X and B be a closed subset of D. The following theorem is a joint result with Mustață. It allows us to compute the minimal log-discrepancy $mld(B; X, D + \lambda \cdot Y)$ using $mld(B; D, \lambda \cdot Y|_D)$.

Theorem C. Let X be a normal, local complete intersection variety, and Y be a proper closed subscheme of X. Let λ is a positive number. Assume $D \subset X$ is a normal effective Cartier divisor such that $D \nsubseteq Y$, then for every proper closed subset $B \subset D$, we have

$$mld(B; X, D + \lambda \cdot Y) = mld(B; D, \lambda \cdot Y|_D).$$

The theorem is first proved in the case that X is smooth in a joint paper of Ein, Mustață and Yasuda. În general, Kollár, and Shokurov have conjectured that the result is true when X is just normal and \mathbb{Q} -Gorenstein (Inversion of Adjunction). See Kollár's article for a discussion of this conjecture and related topics. The following are some geometric applications of the Theorem.

Theorem D. If X is a normal, local complete intersection variety, and Y is a closed subscheme. Suppose that λ is a positive number then the function $x \longrightarrow mld(x; X, \lambda \cdot Y)$, $x \in X$, is lower semicontinuous.

Theorem E. Let X be a normal, local complete intersection variety. X has log canonical (canonical, terminal) singularities if and only if X_m is equidimensional (respectively irreducible, normal) for every m.

CONTACT LOCI AND VALUATIONS

References

- [1] F. Ambro, Inversion of Adjunction for non-degenerate hypersurfaces, arXiv: math.AG/0108168.
- [2] L. Ein, R. Lazarsfeld, M. Mustaţă, Contact loci in arc spaces, Compositio Math. 140 (2004) 1229-1244 math.AG/0303002.
- [3] L. Ein, M. Mustață, and T. Yasuda Jet schemes, log discrepancies and inversion of adjunction Invent. Math. 153 (2003) 519-535.
- [4] L. Ein, M. Mustață, Inversion of adjunction for local complete intersection variety, Am. J. Math. 126 (2004)1355-1365.
- [5] J. Kollár, Singularities of pairs, in Algebraic Geometry, Santa Cruz 1995, volume 62 of Proc. Symp. Pure Math Amer. Math. Soc. 1997, 221–286.
- [6] M. Mustață, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), 599-615.
- [7] M. Mustaţă, Jet schemes of locally complete intersection canonical singularities, with an appendix by D. Eisenbud and E. Frenkel, Invent. Math. 145 (2001), 397–424.